Which technique would be appropriate for clients who exhibit mild neurocognitive impairment

1. United Nations. World Population Prospects: The 1996 Revision. Population division of the Department of Economie and Social Affairs of the United Nations Secretariat: Washington, DC; 1996 [Google Scholar]

2. Katzman R., Fox P. The World-Wide Impact of Dementia. Projections of Prevalence and Costs. In: Mayeaux R, Christen Y, eds. Epidemiology of Alzheimer's Disease: From Gene to Prevention. Berlin, Germany: Springer-Verlag; 1999:1–17. [Google Scholar]

3. Park DC. Applied cognitive aging research. In: Craik FIM, Salthouse TA, eds. The Handbook of Aging and Cognition. Hillsdale, NJ: Lawrence Erlbaum; 1992:449–493. [Google Scholar]

4. Grassley C. Preparing for the baby boomer's retirement: the role of employment. Chairman of the Forum. US Senate Special Committee on Aging; 1997 [Google Scholar]

5. Jackson WA. The Political Economy of Population Ageing. Northampton, Mass: Edward Elgar; 1998 [Google Scholar]

6. Petersen RC., Smith GE., Waring SC., et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–308. [PubMed] [Google Scholar]

7. O'Hara, R., Yesavage JA., Kraemer HC., et al. The APOE ε4 allele is associated with decline on delayed recall performance in community-dwelling older adults. J Am Geriatr Soc. 1998;46 [PubMed] [Google Scholar]

8. Sunderland T. Alzheimer's disease. Cholinergic therapy and beyond. Am J Geriatr Psychiatry. 1998;6(suppl 1):S56–S63. [PubMed] [Google Scholar]

9. Tsolaki M., Fountoulakis KN., Pavlopoulos I., Chantzi E., Kazis A. Prevalence and incidence of Alzheimer's disease and other dementing disorders in Pylea, Greece. Am J Alzheimer Dis. 1999;14:138–149. [Google Scholar]

10. Cummings J. Cognitive and behavioral heterogeneity in Alzheimer's disease: seeking the neurobiological basis. Neurobiol Aging. 2000;21:845–861. [PubMed] [Google Scholar]

11. Brookmeyer R., Gray S., Kawas C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am J Public Health. 1998;88:1337–1342. [PMC free article] [PubMed] [Google Scholar]

12. Pratico D., Delanty N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer's disease. Am J Med. 2000;109:577–585. [PubMed] [Google Scholar]

13. Everitt BJ., Robbins TW. Central cholinergic systems and cognition. Annu Rev Psychol. 1997;48:649–684. [PubMed] [Google Scholar]

14. Perry EK., Tomlinson BE., Blessed G., et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ. 1978;2:1457–1459. [PMC free article] [PubMed] [Google Scholar]

15. Bowen DM., Smith CB., White P., Davison AN. Neurotransmltter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976;99:459–496. [PubMed] [Google Scholar]

16. Davies P., Maloney A. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976;2:1403. [PubMed] [Google Scholar]

17. Perry EK., Gibson PH., Blessed G., Perry RH., Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 1977;34:247–265. [PubMed] [Google Scholar]

18. Nilsson L., Nordberg A., Hardy J., Wester P., Winblad B. Physostigmine restores 3H-acetylcholine efflux from Alzheimer brain slices to normal level. J Neural Transm. 1986;67:275–285. [PubMed] [Google Scholar]

19. Rylett RJ., Ball MJ., Colhoun EH. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer's disease. Brain Res. 1983;289:169–175. [PubMed] [Google Scholar]

20. Whitehouse PJ., Price DL., Struble RG., Clark AW., Coyle JT., DeLong M. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982;215:1237–1239. [PubMed] [Google Scholar]

21. Francis PT., Palmer AM., Snape M. ilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137–147. [PMC free article] [PubMed] [Google Scholar]

22. Little JT., Johnson DN., Minichiello M., Weingartner H., Sunderland T. Combined nicotinic and muscarinic blockade in elderly normal volunteers: cognitive, behavioral, and physiologic responses. Neuropsychopharmacology: 1998;19:60–69. [PubMed] [Google Scholar]

23. Mohs RC., Rosen WG., Davis KL. The Alzheimer's disease assessment scale: an instrument for assessing treatment efficacy. Psychopharmacol Bull. 1983;19:448–450. [PubMed] [Google Scholar]

24. Rosen WG., Mohs RC., Davis KL. A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984;141:1356–1364. [PubMed] [Google Scholar]

25. Folstein MF., Folstein SE., McHugh PH. Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. [PubMed] [Google Scholar]

26. Brooks J., Kraemer H., Tanke E., Yesavage J. The methodology of studying decline in Alzheimer's disease. J Am Geriatr Soc. 1993;41:623–628. [PubMed] [Google Scholar]

27. Clark CM., Sheppard L., Fillenbaum GG., et al. Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: a clinical perspective of data from the Consortium to Establish a Registry for Alzheimer's Disease. Arch Neurol. 1999;56:857–862. [PubMed] [Google Scholar]

28. Salmon DP., Thal LJ., Butters N., Heindel WC. Longitudinal evaluation of dementia of the Alzheimer type: a comparison of 3 standardized mental status examinations. Neurology. 1990;40:1225–1230. [PubMed] [Google Scholar]

29. Davis KL., Thal LJ., Gamzu ER., et al. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disease. The Tacrine Collaborative Study Group. N Engl J Med. 1992;327:1253–1259. [PubMed] [Google Scholar]

30. Farlow M., Gracon SI., Hershey LA., Lewis KW., Sadowsky CH., Dolan-Ureno J. A controlled trial of tacrine in Alzheimer's disease. The Tacrine Study Group. JAMA. 1992;268:2523–2529. [PubMed] [Google Scholar]

31. Knapp MJ., Knopman DS., Solomon PR., Pendlebury WW., Davis CS., Gracon SI. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. The Tacrine Study Group. JAMA. 1994;271:985–991. [PubMed] [Google Scholar]

32. Nordberg A., Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology [published erratum appears in Drug Saf. 1999;20:146]. Drug Saf. 1998;19:465–480. [PubMed] [Google Scholar]

33. Schneider LS. New therapeutic approaches to cognitive impairment. J Clin Psychiatry. 1998;59(suppl ll):8–13. [PubMed] [Google Scholar]

34. Rogers SL., Doody RS., Mohs RC., et al. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebocontrolled study. Arch Intern Med. 1998;158:1021–1031. [PubMed] [Google Scholar]

35. Sirvio J. Strategies that support declining cholinergic neurotransmission in Alzheimer's disease patients. Gerontology. 1999;45:3–14. [PubMed] [Google Scholar]

36. Homma A., Takeda M., Imai Y., et al. Clinical efficacy and safety of donepezil on cognitive and global function in patients with Alzheimer's disease. A 24-week, multicenter, double-blind, placebo-controlled study in Japan. EZOZO Study Group. Dement Geriatr Cogn Disord. 2000;11:299–313. [PubMed] [Google Scholar]

37. Rogers SL., Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US multicentre, randomized, doubleblind, placebo-controlled trial. The Donepezil Study Group. Dementia. 1996;7:293–303. [PubMed] [Google Scholar]

38. Fotiou F., Fountoulakis KN., Tsolaki M., Goulas A., Palikaras A. Changes in pupil reaction to light in Alzheimer's disease patients: a preliminary report. Int J Psychophysiol. 2000;37:111–120. [PubMed] [Google Scholar]

39. Enz A., Amstutz R., Boddeke H., Gmelin G., Malanowski J. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer's disease. Prog Brain Res. 1993;98:431–438. [PubMed] [Google Scholar]

40. Stahl SM. The new cholinesterase inhibitors for Alzheimer's disease. Part 1: their similarities are different. J Clin Psychiatry. 2000;61:710–711. [PubMed] [Google Scholar]

41. Rosier M., Anand R., Cicin-Sain A., et al. Efficacy and safety of rivastigmine in patients with Alzheimer's disease: international randomised controlled trial. BMJ. 1999;318:633–638. [PMC free article] [PubMed] [Google Scholar]

42. Birks J., lakovidou V., Tsolaki M. Rivastigmine for Alzheimer's disease. Cochrane Database Syst Rev. 2000;2:CD001191. [PubMed] [Google Scholar]

43. Farlow M., Anand R., Messina JJ., Hartman R., Veach J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer's disease. Eur Neurol. 2000;44:236–241. [PubMed] [Google Scholar]

44. Krall WJ., Sramek JJ., Cutler NR. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother. 1999;33:441–450. [PubMed] [Google Scholar]

45. Raskind MA., Peskind ER., Wessel T., Yuan W. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology. 2000;54:2261–2268. [PubMed] [Google Scholar]

46. Tariot PN., Erb R., Leibovici A., et al. Carbamazepine treatment of agitation in nursing home patients with dementia: a preliminary study. J Am Geriatr Soc. 1994;42:1160–1166. [PubMed] [Google Scholar]

47. Wilcock G., Lilienfeld S., Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer's disease: multicentre randomised controlled trial. Galantamine International-1 Study Group. BMJ. 2000;321:1445–1449. [PMC free article] [PubMed] [Google Scholar]

48. Wilkinson D., Liliendeld S., Truyen L. Galantamine improves activités of daily living in patients with Alzheimer's disease: a 3 month, placebo-controlled study. Sixth international Stockholm/Springfield Symposium on Advances in Alzheimer Therapy. Stockholm, Sweden, 2000. Abstract. [Google Scholar]

49. Knopman D., Schneide rL., Davis K., et al. Long-term tacrine (Cognex) treatment: effects on nursing home placement and mortality. Tacrine Study Group. Neurology. 1996;47:166–177. [PubMed] [Google Scholar]

50. Nordberg A. Effect of long-term treatment with tacrine (THA) in Alzheimer's disease as visualized by PET. Acta Neurol Scand Suppl. 1993;149:62–65. [PubMed] [Google Scholar]

51. Hauber AB., Gnanasakthy A., Snyder EH., Bala MV., Richter A., Mauskopf JA. Potential savings in the cost of caring for Alzheimer's disease. Treatment with rivastigmine. Pharmacoeconomics. 2000;17:351–360. [PubMed] [Google Scholar]

52. Fenn P., Gray A. Estimating long-term cost savings from treatment of Alzheimer's disease. A modelling approach. Pharmacoeconomics. 1999;16:165–174. [PubMed] [Google Scholar]

53. Fraser M., Snyder EH. The economic benefits of delaying progression in Alzheimer's disease using cholinesterase inhibitors. Clin Geriatr. 2000;8:72–93. [Google Scholar]

54. Gahtan E., Overmier JB. Inflammatory pathogenesis in Alzheimer's disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev. 1999;23:615–633. [PubMed] [Google Scholar]

55. Cacabelos R., Takeda M., Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int J Geriatr Psychiatry. 1999;14:3–47. [PubMed] [Google Scholar]

56. Winblad B., Poritis N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry. 1999;14:135–146. [PubMed] [Google Scholar]

57. Ingram E., Tessler S., Bowery N., Emson P. Glial glutamate transporter mRNAs in the genetically absence epilepsy rat from Strasbourg. Brain Res Mol Brain Res. 2000;75:96–104. [PubMed] [Google Scholar]

58. Cutler NR., Fakouhi TD., Smith WT., et al. Evaluation of multiple doses of milacemide in the treatment of senile dementia of the Alzheimer's type. J Geriatr Psychiatry Neurol. 1993;6:115–119. [PubMed] [Google Scholar]

59. Dysken MW., Mendels J., LeWitt P., et al. Milacemide: a placebo-controlled study in senile dementia of the Alzheimer type. J Am Geriatr Soc. 1992;40:503–506. [PubMed] [Google Scholar]

60. Lynch G., Granger R., Ambros-lngerson J., Davis CM., Kessler M., Schehr R. Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurol. 1997;145:89–92. [PubMed] [Google Scholar]

61. Guez D. Long-term effects and safety of almitrine-raubasine in ageassociated cognitive decline. Clin Neuropharmacol. 1994;13:S109–S116. [PubMed] [Google Scholar]

62. Riedel WJ., Jolies J. Cognition enhancers in age-related cognitive decline. Drugs Aging. 1996;8:245–274. [PubMed] [Google Scholar]

63. Allain H., Neuman E., Malbezin M., et al. Bridging study of S12024 in 53 in-patients with Alzheimer's disease. J Am Geriatr Soc. 1997;45:125–126. [PubMed] [Google Scholar]

64. Meda L., Bonaiuto C., Szendrei Gl., Ceska M., Rossi F., Cassatella MA. β-Amyloid(25-35) induces the production of interleukin-8 from human monocytes. J Neuroimmunol. 1995;59:29–33. [PubMed] [Google Scholar]

65. Giulian D., Haverkamp LJ., Yu J., et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci. 1996;16:6021–6037. [PMC free article] [PubMed] [Google Scholar]

66. Auld DS., Kar S., Quirion R. Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci. 1998;21:43–49. [PubMed] [Google Scholar]

67. Yamada KA. Therapeutic potential of positive AMPA receptor modulators in the treatment of neurological disease. Expert Opin Invest Drugs. 2000;9:765–778. [PubMed] [Google Scholar]

68. Yamada K., Tanaka T., Han D., Senzaki K., Kameyama T., Nabeshima T. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci. 1999;11:83–90. [PubMed] [Google Scholar]

69. Citron M. Secretases as targets for the treatment of Alzheimer's disease. Mol Med Today. 2000;6:392–397. [PubMed] [Google Scholar]

70. Schenk D., Barbour R., Dunn W., et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400:173–177. [PubMed] [Google Scholar]

71. Itagaki S., Akiyama H., Saito H., McGeer PL. Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease. Brain Res. 1994;645:78–84. [PubMed] [Google Scholar]

72. Rogers J., Kirby LC., Hempelman SR., et al. Clinical trial of indomethacin in Alzheimer's disease. Neurology. 1993;43:1609–1611. [PubMed] [Google Scholar]

73. Aisen PS., Davis KL., Berg JD., et al. A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's Disease Cooperative Study. Neurology. 2000;54:588–593. [PubMed] [Google Scholar]

74. Cummings JL., Vinters H., Cole G., et al. Alzheimer's disease: etiologies, pathophysiology, cognitive reserve and treatment opportunities. Neurology. 1998;51:S2–S17. [PubMed] [Google Scholar]

75. Chang JY., Liu LZ. Manganese potentiates nitric oxide production by microglia. Brain Res Mol Brain Res. 1999;68:22–28. [PubMed] [Google Scholar]

76. Pasinetti G. Cyclooxygenase and inflammation in Alzheimer's disease: experimental approaches and clinical interventions. J Neurosci Res. 1998;54:1–6. [PubMed] [Google Scholar]

77. Small G. Treatment of Alzheimer's disease: current approaches and promising developments. Am J Med. 1998;104:32S–38S. [PubMed] [Google Scholar]

78. Christen Y., Costentin J., Lacour M. Effects of Ginkgo biloba Extract (EGb 761) on the Central Nervous System. Paris, France: Elsevier; 1992 [Google Scholar]

79. Clostre F. Ginkgo biloba extract (EGb 761). State of knowledge in the dawn of the year 2000. Ann Pharm Fr. 1999;57:58–88. [PubMed] [Google Scholar]

80. Kanowski S., Herrmann WM., Stephan K., Wierich W., Horr R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Pharmacopsychiatry. 1996;29:47–56. [PubMed] [Google Scholar]

81. Hofferberth B. The effect of Ginkgo biloba extract on neurophysiological and psychometric measurement results in patients with psychotic organic brain syndrome. A double-blind study against placebo [in German], Arzneimittelforschung. 1989;39:918–922. [PubMed] [Google Scholar]

82. Rai GS., Shovlin C., Wesnes KA. A double-blind, placebo-controlled study of Ginkgo biloba extract (“tanakan”) in elderly outpatients with mild to moderate memory impairment. Curr Med Res Opin. 1991;12:350–355. [PubMed] [Google Scholar]

83. Le Bars PL., Katz MM., Berman N., Itil T., Freedman AM., Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA. 1997;278:1327–1332. [PubMed] [Google Scholar]

84. Wickelgren I. Estrogen stakes claim to cognition. Science. 1997;276:675–678. [PubMed] [Google Scholar]

85. Toran-Allerand CD., Miranda RC., Bentham WD., et al. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Neuropsychol Rev. 1992;3:119–169. [PMC free article] [PubMed] [Google Scholar]

86. Woolley CS., Weiland NG., McEwen BS., Schwartzkroin PA. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-medicated synaptic input: correlation with dendritic spine density. J Neurosci. 1997;17:1848–1859. [PMC free article] [PubMed] [Google Scholar]

87. Kawas C., Resnick S., Morrison A., et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology. 1997;48:1517–1521. [PubMed] [Google Scholar]

88. Tang MX. Effect of oestrogen during menopause on risk and age-ofonset of Alzheimer's disease. Lancet. 1996;348:429–432. [PubMed] [Google Scholar]

89. Asthana S., Craft S., Baker LD., et al. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer's disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology. 1999;24:657–677. [PubMed] [Google Scholar]

90. Henderson VW., Paganini-Hill A., Miller BL., et al. Estrogen for Alzheimer's disease in women: randomized, double-blind, placebo-controlled trial. Neurology. 2000;54:295–301. [PubMed] [Google Scholar]

91. Mulnard RA., Cotman CW., Kawas C., et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer's Disease Cooperative Study. JAMA. 2000;283:1007–1015. [PubMed] [Google Scholar]

92. Shaywitz BA., Shaywitz SE. Estrogen and Alzheimer disease: plausible theory, negative clinical trial. JAMA. 2000;283:1055–1056. [PubMed] [Google Scholar]

93. Farlow MR., Lahiri DK., Poirier J., Davignon J., Schneider L., Hui SL. Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer's disease. Neurology. 1998;50:669–677. [PubMed] [Google Scholar]

94. Gutzmann H., Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer's disease: update on a 2-year double-blind multicentre study. J Neural Transm Suppl. 1998;54:301–310. [PubMed] [Google Scholar]

95. Croisile B., Trillet M., Fondarai J., Laurent B., Mauguiere F., Billardon M. Long-term and high-dose piracetam treatment of Alzheimer's disease. Neurology. 1993;43:301–305. [PubMed] [Google Scholar]

96. Vernon MW., Sorkin EM. Piracetam. An overview of its pharmacological properties and a review of its therapeutic use in senile cognitive disorders. Drugs Aging. 1991;1:17–35. [PubMed] [Google Scholar]

97. Tariska P., Paksy A. Cognitive enhancement effect of piracetam in patients with mild cognitive impairment and dementia [in Hungarian]. Orv Hetil. 2000;141:1189–1193. [PubMed] [Google Scholar]

98. Flicker L., Grimley-Evans J. Piracetam for dementia or cognitive impairment. Cochrane Database Syst Rev. 2000;2:CD001011. [PubMed] [Google Scholar]

99. Windisch M. Approach towards an integrative drug treatment of Alzheimer's disease. J Neural Transm Suppl. 2000;59:3001–3013. [PubMed] [Google Scholar]

100. Alvarez X., Lombardi V., Corzo L., et al. Oral Cerebrolysin enhances brain alpha activity and improves cognitive performance in elderly control subjects. J Neural Transm Suppl. 2000;59:315–328. [PubMed] [Google Scholar]

101. Bae CY., Cho CY., Cho K., et al. A double-blind, placebo-controlled, multicenter study of Cerebrolysin for Alzheimer's disease. J Am Geriatr Soc. 2000;48:1566–1571. [PubMed] [Google Scholar]

102. Ruther E., Ritter R., Apecechea M., Freytag S., Gmeinbauer R., Windisch M. Sustained improvements in patients with dementia of Alzheimer's type (DAT) 6 months after termination of Cerebrolysin therapy. J Neural Transm. 2000;107:815–829. [PubMed] [Google Scholar]

103. Sapolsky RM., Krey LC., McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci. 1985;5:1222–1227. [PMC free article] [PubMed] [Google Scholar]

104. Sapolsky R. Why stress is bad for your brain. Science. 1986;273:749–750. [PubMed] [Google Scholar]

105. McEwen B. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338:171–179. [PubMed] [Google Scholar]

106. McEwen B. Stress and the aging hippocampus. Neuroendocrinology. 1999;20:49–70. [PubMed] [Google Scholar]

107. Davis KL., Davis BM., Greenwald BS., et al. Cortisol and Alzheimer's disease, I: Basal studies. Am J Psychiatry. 1986;143:300–305. [PubMed] [Google Scholar]

108. Hollander E., Mohs RC., Davies KL. Cholinergic approaches to the treatment of Alzheimer's disease. Br Med Bull. 1986;42:97–100. [PubMed] [Google Scholar]

109. O'Brien JT., Ames D., Schweiter I., Mastwyk M., Colman P. Enhanced adrenal sensitivity to adrenocorticotrophic hormone (ACTH) is evidence of HPA axis hyperactivity in Alzheimer's disease. Psychol Med. 1996;26:7–14. [PubMed] [Google Scholar]

110. Swaab DF., Raadsheer FC., Endert E., Hofman MA., Kamphorst W., Ravid R. Increased Cortisol levels in aging and Alzheimer's disease in postmortem cerebrospinal fluid. J Neuroendocrinol. 1994;6:681–687. [PubMed] [Google Scholar]

111. Balldin J., Blennow K., Brane G., et al. Relationship between mental impairment and HPA axis activity in dementia disorders. Dementia. 1994;5:252–256. [PubMed] [Google Scholar]

112. Magri F., Terenzi F., Ricciardi T., et al. Association between changes in adrenal secretion and cerebral morphometric correlates in normal aging and senile dementia. Dement Geriatr Cogn Disord. 2000;11:90–99. [PubMed] [Google Scholar]

113. Miller T., Taylor J., Rogerson S., et al. Cognitive and noncognitive symptoms in dementia patients: relationship to Cortisol and dehydroepiandrosterone (DHEA). Int Psychogeriatr. 1998;10:85–96. [PubMed] [Google Scholar]

114. Weiner MF., Vobach S., Svetlik D., Risser RC. Cortisol secretion and Alzheimer's disease progression: a preliminary report. Biol Psychiatry. 1993;34:158–161. [PubMed] [Google Scholar]

115. Weiner MF., Vobach S., Olsson K., Svetlik D., Risser RC. Cortisol secretion and Alzheimer's disease progression. Biol Psychiatry. 1997;42:1030–1038. [PubMed] [Google Scholar]

116. Franceschi M., Airaghi L., Gramigna C., et al. ACTH and Cortisol secretion in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1991;54:836–837. [PMC free article] [PubMed] [Google Scholar]

117. Swanwick GR., Kirby M., Bruce I., et al. Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer's disease: lack of association between longitudinal and cross-sectional findings. Am J Psychiatry. 1998;155:286–289. [PubMed] [Google Scholar]

118. Tsolaki M., Karamouzis M., Divanoglou D., et al. Dehydroepiandrosterone sulfate (DHEAS) in the serum of patients with dementia. Bio Psychol. 1997:4293 Abstract.. [Google Scholar]

119. Di lorio A., Zito M., Lupinetti M., Abate G. Are vascular factors involved in Alzheimer's disease? Facts and theories. Aging Clin Exp Res. 1999;11:345–352. [PubMed] [Google Scholar]

120. Elias MF., Wolf PA., D'Agostino RB., Cobb J., White LR. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham study. Am J Epidemiol. 1993;138:353–364. [PubMed] [Google Scholar]

121. Elias MF. Effects of chronic hypertension on cognitive functioning. Geriatrics. 1998;53:S49–S52. [PubMed] [Google Scholar]

122. Kilander L., Nyman H., Boberg M., Hansson L., Lithell H. Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension. 1998;31:780–786. [PubMed] [Google Scholar]

123. Launer LJ., Masaki K., Petrovitch H., Foley D., Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA. 1995;274:1846–1851. [PubMed] [Google Scholar]

124. Skoog I. The relationship between blood pressure and dementia: a review. Biomed Pharmacother. 1997;51:367–375. [PubMed] [Google Scholar]

125. Hofman A., Ott A., Breteler MM., et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet. 1997;349:151–154. [PubMed] [Google Scholar]

126. Hall ED., Oostveen JA., Dunn E., Carter DB. Increased amyloid protein precursor and apolipoprotein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischemia in gerbils. Exp Neurol. 1995;135:17–27. [PubMed] [Google Scholar]

127. Sparks DL., Scheff SW., Liu H., Landers TM., Coyne CM., Hunsaker JC. Increased incidence of neurofibrillary tangles (NFT) in non-demented individuals with hypertension. J Neurol Sci. 1995;131:162–169. [PubMed] [Google Scholar]

128. Perez-Stable EJ., Halliday R., Gardiner PS., et al. The effects of propranolol on cognitive function and quality of life: a randomized trial among patients with diastolic hypertension. Am J Med. 2000;108:359–365. [PubMed] [Google Scholar]

129. Forette F., Seux M., Staessen J., et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352:1347–1351. [PubMed] [Google Scholar]

130. Refolo LM., Pappolla MA., Malester B., et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7:321–331. [PubMed] [Google Scholar]

131. Sparks DL., Martin TA., Gross DR., Hunsaker JC 3rd. Link between heart disease, cholesterol, and Alzheimer's disease: a review. Microsc Res Tech. 2000;50:287–290. [PubMed] [Google Scholar]

132. Eckert GP., Cairns NJ., Maras A., Gattaz WF., Muller WE. Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer's disease. Dement Geriatr Cogn Disord. 2000;11:181–186. [PubMed] [Google Scholar]

133. de-Andrade FM., Larrandaburu M., Callegari-Jacques SM., Gastaldo G., Hutz MH. Association of apolipoprotein E polymorphism with plasma lipids and Alzheimer's disease in a Southern Brazilian population. Braz J Med Biol Res. 2000;33:529–537. [PubMed] [Google Scholar]

134. Evans RM., Emsley CL., Gao S., et al. Serum cholesterol, APOE genotype, and the risk of Alzheimer's disease: a population-based study of African Americans. Neurology. 2000;54:240–242. [PubMed] [Google Scholar]

135. Liu HC., Hong CJ., Wang SJ., et al. ApoE genotype in relation to AD and cholesterol: a study of 2326 Chinese adults. Neurology. 1999;53:962–966. [PubMed] [Google Scholar]

136. Notkola IL., Sulkava R., Pekkanen J., et al. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer's disease. Neuroepidemiology. 1998;17:14–20. [PubMed] [Google Scholar]

137. Wehr H., Parnowski T., Puzynski S., et al. Apolipoprotein E genotype and lipid and lipoprotein levels in dementia. Dement Geriatr Cogn Disord. 2000;11:70–73. [PubMed] [Google Scholar]

138. Romas SN., Tang MX., Berglund L., Mayeux R. APOE genotype, plasma lipids, lipoproteins, and AD in community elderly. Neurology. 1999;53:517–521. [PubMed] [Google Scholar]

139. Prince M., Lovestone S., Cervilla J., et al. The association between APOE and dementia does not seem to be mediated by vascular factors. Neurology. 2000;54:397–402. [PubMed] [Google Scholar]

140. Wolozin B., Kellman W., Ruosseau P., Celesia GG., Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol. 1999;57:1439–1443. [PubMed] [Google Scholar]

141. Schneider LS., Farlow M. Combined tacrine and estrogen replacement therapy in patients with Alzheimer's disease. Ann N Y Acad Sci. 1997;826:317–322. [PubMed] [Google Scholar]

142. Sano M., Ernesto C., Thomas RG., et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N Engl J Med. 1997;336:1216–1222. [PubMed] [Google Scholar]

143. Poirier J. Apolipoprotein E4, cholinergic integrity and the pharmacogenetics of Alzheimer's disease. J Psychiatry Neurosci. 1999;24:147–153. [PMC free article] [PubMed] [Google Scholar]

144. Farlow MR., Evans RM. Pharmacologic treatment of cognition in Alzheimer's dementia. Neurology. 1998;51:S36–S44. [PubMed] [Google Scholar]

145. Richard F., Helbecque N., Neuman E., Guez D., Levy R., Amouyel P. APOE genotyping and response to drug treatment in Alzheimer's disease. Lancet. 1997;349:539. [PubMed] [Google Scholar]

146. Wilcock G., Lilienfeld S. Galantamine alleviates caregiver burden in Alzheimer's disease: a 6-month placebo-controlled study. Seventh World Alzheimer Congress. Washington, DC, 2000. Poster. [Google Scholar]

147. Reichman W. Alzheimer's disease: clinical treatment options. Am J ManagCare. 2000;6:S1125–S1132. Discussion S1133–S1128. [PubMed] [Google Scholar]

148. Kasl-Godley J., Gatz M. Psychosocial interventions for individuals with dementia: an integration of theory, therapy, and a clinical understanding of dementia. Clin Psychol Rev. 2000;20:755–782. [PubMed] [Google Scholar]

149. Baldelli MV., Pirani A., Motta M., Abati E., Mariani E., Manzi V. Effects of reality orientation therapy on elderly patients in the community. Arch Gerontol Geriatr. 1993;17:211–218. [PubMed] [Google Scholar]

150. Zanetti O., Frisoni GB., De Leo D., Dello Buono M., Bianchetti A., Trabucchi M. Reality orientation therapy in Alzheimer disease: useful or not? A controlled study. Alzheimer Dis Assoc Disord. 1995;9:132–138. [PubMed] [Google Scholar]

151. Greene JG., Timbury GC., Smith R., Gardiner M. Reality orientation with elderly patients in the community: an empirical evaluation. Age Ageing. 1983;12:38–43. [PubMed] [Google Scholar]

152. Hanley IG., Lusty K. Memory aids in reality orientation: a single-case study. Behav Res Ther. 1983;22:709–712. [PubMed] [Google Scholar]

153. Bourgeois MS. Enhancing conversation skills in patients with Alzheimer's disease using a prosthetic memory aid. J Appl Behav Anal. 1990;23:29–42. [PMC free article] [PubMed] [Google Scholar]

154. Goldwasser AN., Auerbach SM., Harkins SW. Cognitive, affective, and behavioral effects of reminiscence group therapy on demented elderly. Int J Aging Hum Dev. 1987;25:209–222. [PubMed] [Google Scholar]

155. Baines S., Saxby P., Ehlert K. Reality orientation and reminiscence therapy. A controlled cross-over study of elderly confused people. Br J Psychiatry. 1987;151:222–231. [PubMed] [Google Scholar]

156. Head DM., Portnoy S., Woods RT. The impact of reminiscence groups in two different settings. Int J Geriatr Psychol. 1990;5:295–302. [Google Scholar]

157. Teri L., Gallagher-Thompson D. Cognitive-behavioral interventions for treatment of depression in Alzheimer's patients. Gerontologist. 1991;31:413–416. [PubMed] [Google Scholar]

158. Teri L., Rabins P., Whitehouse P., et al. Management of behavior disturbance in Alzheimer disease: current knowledge and future directions. Alzheimer Dis Assoc Disord. 1992;6:77–88. [PubMed] [Google Scholar]

159. Mittelman M., Ferris S., Shulman E., Steinberg G., Levin B. A family intervention to delay nursing home placement of patients with Alzheimer disease. A randomized controlled trial. JAMA. 1996;276:1725–1731. [PubMed] [Google Scholar]

160. Miller PA., Butin D. The role of occupational therapy in dementia - COPE (Caregiver Options for Practical Experiences). Int J Geriatr Psychiatry. 2000;15:86–89. [PubMed] [Google Scholar]

161. Skoog I., Gustafson D. HRT and dementia. J Epidemiol Biostat. 1999;4:227–251 Discussion 252. [PubMed] [Google Scholar]

162. Craik FS., Salthouse TA., eds. The Handbook of Aging and Cognition. Hillsdale, NJ: Lawerence Erlbaum Associates; 1992 [Google Scholar]

163. La Rue A. Aging and Neuropsychological Assessment. New York, NY: Plenum Press; 1992 [Google Scholar]

164. Salthouse TA. Theoretical Perspectives on Cognitive Aging. Hillsdale, NJ: Lawrence Erlbaum Associates; 1991 [Google Scholar]

165. Hertzog C., Schaie KW. Stability and change in adult intelligence. 2. Simultaneous analysis of longitudinal means and covariance structures. Psychol Aging. 1988;3:122–130. [PubMed] [Google Scholar]

166. La Rue A., Swanda R. Neuropsychological assessment. In: Nussbaum PD, ed. Neuropsychological Assessment. New York, NY: Plenum Press; 1997 [Google Scholar]

167. Schaie KW. Intellectual development in adulthood. In: Birren JE, Schaie KW, eds. Handbook of the Psychology of Aging. 3rd ed. San Diego, Calif: Academic Press; 1990:222–233. [Google Scholar]

168. Taylor JL., Miller TP., Tinklenberg JR. Correlates of memory decline. A 4-year longitudinal study of older adults with memory complaints. Psychol Aging. 1992;7:185–193. [PubMed] [Google Scholar]

169. Rabbitt P. Applied cognitive gerontology: some problems, methodologies and data. Appl Cogn Psychol. 1990;4:225–246. [Google Scholar]

170. Hultsch DF., Dixon RA. Learning and memory in aging. In: Birren JE, Schaie KW, eds. Handbook of the Psychology of Aging. 3rd ed. San Diego, Calif: Academic Press; 1999:258–274. [Google Scholar]

171. Light L. The organization of memory in old age. In: Craik FIM, Salt-house TA, eds. The Handbook of Aging and Cognition. Hillsdale, NJ: Lawrence Erlbaum Associates; 1992:111–165. [Google Scholar]

172. Dobbs AR., Rule BG. Prospective memory and self-reports of memory abilities in older adults. Can J Psychol. 1987;41:209–222. [PubMed] [Google Scholar]

173. Leirer VO., Morrow DG., Sheikh Jl., Pariante GM. Memory skills elders want to improve. Exp Aging Res. 1990;16:155–158. [PubMed] [Google Scholar]

174. Petersen RC. Aging, mild cognitive impairment, and Alzheimer's disease. Neurol Clin. 2000;18:789–806. [PubMed] [Google Scholar]

175. Ferris SH., Kluger A. Commentary on age-associated memory impairment, age-related cognitive decline and mild cognitive impairment. Aging Neuropsychol Cogn. 1996;3:148–153. [Google Scholar]

176. Crook T., Bartus RT., Ferris SH., et al. Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change. Report of a National Institute of Mental Health workgroup. Dev Neuropsychol. 1986;2:261–276. [Google Scholar]

177. Levy R. Aging-associated cognitive decline. Int Psychogeriatr. 1994;6:63–68. [PubMed] [Google Scholar]

178. Ritchie K., Artero S., Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology. 2001;56:37–42. [PubMed] [Google Scholar]

179. Sherwin B. Mild cognitive impairment: potential pharmacological treatment options. J Am Geriatr Soc. 2000;48:431–441. [PubMed] [Google Scholar]

180. McGeer E., McGeer PL. Age changes in the human for some enzymes associated with metabolism of catecholamines, GABA, and acetylcholine. In: Ordee JM, Brizee RR, eds. Neurobiology of Aging. New York, NY: Raven Press; 1976 [Google Scholar]

181. White P., Hiley CR., Goodhardt MJ., et al. Neocortical cholinergic neurons in elderly people, Lancet. 1977;1:668–671. [PubMed] [Google Scholar]

182. Baxter MG., Frick KM., Price DL., et al. Presynaptic markers of cholinergic function in the rat brain: relationship with age and cognitive status. Neuroscience. 1999;89:771–779. [PubMed] [Google Scholar]

183. Davis KL MR., Marin D., Purohit DP., et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA. 1999;281:1401–1406. [PubMed] [Google Scholar]

184. Harder JA., Baker HF., Ridley RM. The role of the central cholinergic projections in cognition: implications of the effects of scopolamine on discrimination learning by monkeys. Brain Res Bull. 1998;45:319–326. [PubMed] [Google Scholar]

185. Molchan S., Martinez RA., Hill JL., et al. Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Brain Res Rev. 1992;17:215–216. [PubMed] [Google Scholar]

186. Fibiger HC. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci. 1991;14:220–223. [PubMed] [Google Scholar]

187. Mohammed AH. Effects of cholinesterase inhibitors on learning and memory in rats: a brief review with special reference to THA. Acta Neurol Scand Suppl. 1993;149:13–15. [PubMed] [Google Scholar]

188. Siegfried KR. Pharmacodynamic and early clinical studies with velnacrine. Acta Neurol Scand Suppl. 1993;149:26–28. [PubMed] [Google Scholar]

189. Sitaram N., Weingartner H., Gillin JC. Human serial learning: enhancement with arecholine and choline impairment with scopolamine. Science. 1978;201:274–276. [PubMed] [Google Scholar]

190. Christie JE., Shering A., Ferguson J., Glen Al. Physostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia. Br J Psychiatry. 1981;138:46–50. [PubMed] [Google Scholar]

191. Braida D., Paladini E., Griffini P., et al. Long-lasting antiamnesic effect of a novel anticholinesterase inhibitor (MF268). Pharmacol Biochem Behav. 1998;59:897–901. [PubMed] [Google Scholar]

192. Dawson GR., Iversen SD. The effects of novel cholinesterase inhibitors and selective muscarinic receptor agonists in tests of reference and working memory. Behav Brain Res. 1993;57:143–153. [PubMed] [Google Scholar]

193. Rupniak NM., Tye SJ., Field MJ. Enhanced performance of spatial and visual recognition memory tasks by the selective acetylcholinesterase inhibitor E2020 in rhesus monkeys. Psychopharmacology. 1997;131:406–410. [PubMed] [Google Scholar]

194. Furey ML., Pietrini P., Haxby JV., et al. Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc Natl Acad Sci U S A. 1997;94:6512–6516. [PMC free article] [PubMed] [Google Scholar]

195. Furey ML., Pietrini P., Haxby JV. Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science. 2000;290:2315–2319. [PubMed] [Google Scholar]

196. Muir JL. Acetylcholine, aging, and Alzheimer's disease. Pharmacol Biochem Behav. 1997;56:687–696. [PubMed] [Google Scholar]

197. Schwartz BL., Hashtroudi S., Herting RL., Handerson H., Deutsch SI. Glycine prodrug facilitates memory retrieval in humans. Neurology. 1991;41:1341–1343. [PubMed] [Google Scholar]

198. Schwartz BL., Hashtroudi S., Herting RL., Deutsch SI. The effects of milacemide on item and source memory. Clin Neuropharmacol. 1992;15:114–119. [PubMed] [Google Scholar]

199. Saletu B., Grunberger J., Linzmayer L. Acute and subacute CNS effects of milacemide in elderly people: double-blind, placebo-controlled quantitative EEG and psychometric investigations. Arch Gerontol Geriatr. 1986;5:165–181. [PubMed] [Google Scholar]

200. Jones RW., Wesnes KA., Kirby J. Effects of NMDA modulation in scopolamine dementia. Ann N Y Acad Sci. 1991;640:241–242. [PubMed] [Google Scholar]

201. Peacock JM., Folsom AR., Knopman DS., Mosley TH., Goff DC., Szklo M. Association of nonsteroidal anti-inflammatory drugs and aspirin with cognitive performance in middle-aged adults. Neuroepidemiology. 1999;18:134–143. [PubMed] [Google Scholar]

202. Hanlon JT., Schmader KE., Landerman LR., et al. Relation of prescription nonsteroidal antiinflammatory drug use to cognitive function among community-dwelling elderly. Ann Epidemiol. 1997;7:87–94. [PubMed] [Google Scholar]

203. Rozzini R., Ferrucci L., Losonczy K., Havlik RJ., Guralnik JM. Protective effect of chronic NSAID use on cognitive decline in older persons. J Am Geriatr Soc. 1996;44:1025–1029. [PubMed] [Google Scholar]

204. Karplus TM., Saag KG. Nonsteroidal anti-inflammatory drugs and cognitive function: do they have a beneficial or deleterious effect? Drug Saf. 1998;19:427–433. [PubMed] [Google Scholar]

205. Kennedy DO., Scholey AB., Wesnes KA. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology (Berl). 2000;151:416–423. [PubMed] [Google Scholar]

206. Mix JA., Crews WD. An examination of the efficacy of Ginkgo biloba extract EGb761 on the neuropsychologic functioning of cognitively intact older adults. J Altern Complement Med. 2000;6:219–229. [PubMed] [Google Scholar]

207. Rigney U., Kimber S., Hindmarch I. The effects of acute doses of standardized Ginkgo biloba extract on memory and psychomotor performance in volunteers. Phytother Res. 1999;13:408–415. [PubMed] [Google Scholar]

208. Barrett-Connor E., Kritz-Silverstein D. Estrogen replacement therapy and cognitive function in older women. JAMA. 1993;269:2637–2641. [PubMed] [Google Scholar]

209. Henderson VW., Paganini-Hill A., Emanuel CK., Dunn ME., Buckwalter JG. Estrogen replacement therapy in older women. Comparisons between Alzheimer's disease cases and nondemented control subjects. Methods Find Exp Clin Pharmacol. 1994;16:597–607. [PubMed] [Google Scholar]

210. Henderson VW., Watt L., Buckwalter JG. Cognitive skills associated with estrogen replacement in women with Alzheimer's disease. Psychoneuroendocrinology. 1996;21:421–430. [PubMed] [Google Scholar]

211. Paganini-Hill A., Henderson VW. Estrogen deficiency and risk of Alzheimer's disease in women. Am J Epidemiol. 1994;140:256–261. [PubMed] [Google Scholar]

212. Paganini-Hill A., Henderson VW. The effects of hormone replacement therapy, lipoprotein cholesterol levels, and other factors on a clock drawing task in older women. J Am Geriatr Soc. 1996;44:818–822. [PubMed] [Google Scholar]

213. Phillips SM., Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology. 1992;17:485–495. [PubMed] [Google Scholar]

214. Robinson D., Friedman L., Marcus R., Tinklenberg J., Yesavage J. Estrogen replacement therapy and memory in older women. J Am Geriatr Soc. 1994;42:919–922. [PubMed] [Google Scholar]

215. Duka T., Tasker R., McGowan JF. The effects of 3-week estrogen hormone replacement on cognition in elderly healthy females. Psychopharmacology (Bert). 2000;149:129–139. [PubMed] [Google Scholar]

216. Sherwin B. Estrogen and/or androgen replacement therapy in surgically menopausal women. Psychoneuroendocrinology. 1988;29:423–430. [Google Scholar]

217. Maki PM., Zonderman AB., Resnick SM. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry. 2001;158:227–233. [PubMed] [Google Scholar]

218. Halbreich U., Lumley L., Palter S., et al. Possible acceleration of age effects on cognition following menopause. J Psychiatry Res. 1995;29:153–163. [PubMed] [Google Scholar]

219. Fillenbaum GG., Hanlon JT., Landerman LR., Schmader KE. Impact of estrogen use on decline in cognitive function in a representative sample of older community-resident women. Am J Epidemiol. 2001;153:137–144. [PubMed] [Google Scholar]

220. Szklo M., Cerhan J., Diez-Roux AV., et al. Estrogen replacement therapy and cognitive functioning in the Atherosclerosis Risk In Communities (ARIC) study. Am J Epidemiol. 1996;144:1048–1057. [PubMed] [Google Scholar]

221. Eberling JL., Reed BR., Coleman JE., Jagust WJ. Effect of estrogen on cerebral glucose metabolism in postmenopausal women. Neurology. 2000;55:875–877. [PubMed] [Google Scholar]

222. Maki PM., Resnick SM. Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition. Neurobiol Aging. 2000;21:373–383. [PubMed] [Google Scholar]

223. Sherwin BB. Can estrogen keep you smart? Evidence from clinical studies. J Psychiatry Neurosci. 1999;24:315–321. [PMC free article] [PubMed] [Google Scholar]

224. Fioravanti M., Bergamasco B., Boccola V., et al. A multicentered, doubleblind, controlled study of piracetam vs placebo in geriatric patients with nonvascular mild-moderate deficits. N Trends Clin Neuropharmacol. 1991;5:27–34. [Google Scholar]

225. Israel L., Myslinski M., Dubos G., Melac M. Combined therapies in family practice and hospitals. Presse Med. 1997;26:1186–1191. [PubMed] [Google Scholar]

226. Gallai V., Mazzotta G., Del Gatto F., et al. A clinical and neurophysiological trial on nootropic drugs in patients with mental decline. Acta Neurol (Napoli). 1991;13:1–12. [PubMed] [Google Scholar]

227. Schmidt U., Brendemuhl D., Engels K., Schenk N., Ludemann E. Piracetam in elderly motorists. Pharmacopsychiatry. 1991;24:121–126. [PubMed] [Google Scholar]

228. Mondadori C., Petschke F., Hausler A. The effects of nootropics on memory: new aspects for basic research. Pharmacopsychiatry. 1989;22(suppl 2):102–106. [PubMed] [Google Scholar]

229. Marini G., Caratti C., Pelluffo F., et al. Placebo-controlled, double-blind study of pramiracetam in the treatment of elderly subjects with memory impairment. Adv Ther. 1992;9:136–146. [Google Scholar]

230. Backman L., Mantyla T., Herlitz A. The optimization of episodic remembering in old age. In: Baltes PBBMM, ed. Successful Aging: Perspectives from the Behavioral Sciences. New York, NY: Cambridge University Press; 1990:118–163. [Google Scholar]

231. Brooks JO., III., Friedman L., Pearman A., Gray C., Yesavage JA. Mnemonic training in older adults: effects of age, length of training, and type of cognitive pretraining. Int Psychogeriatry. 1999;11:75–84. [PubMed] [Google Scholar]

232. Verhaeghen P., Marcoen A., Goossens L. Improving memory performance in the aged through mnemonic training: a meta-analytic study. Psychol Aging. 1992;7:242–251. [PubMed] [Google Scholar]

233. Willis SL., Nesselroade CS. Long-term effects of fluid ability training in old-old age. Dev Psychol. 1990;26:1–6. [Google Scholar]

234. Yesavage JA., Sheikh Jl., Tanke ED., Hill RD. Response to memory training and individual differences in verbal intelligence and state anxiety. Am J Psychiatry. 1988;145:636–639. [PubMed] [Google Scholar]

235. Verghese J. PTSD, dementia, and sleep disorder: a possible association. J Am Geriatr Soc. 2000;48:1169–1170. [PubMed] [Google Scholar]

236. Anschutz L., Camp CJ., Markley RP., Kramer JJ. Remembering mnemonics: a 3-year follow-up on the effects of mnemonics training in elderly adults. Exp Aging Res. 1987;13:141–143. [PubMed] [Google Scholar]

237. Neely A., Backman L. Long-term maintenance of gains from memory training in older adults: Two 3½-year follow-up studies. J Gerontol Psychol Sci. 1993;48:P233–P237. [PubMed] [Google Scholar]

238. Scogin F., Bienias JL. A 3-year follow-up of older adult participants in a memory-skills training program. Psychol Aging. 1988;3:334–337. [PubMed] [Google Scholar]

239. O'Hara R., Brooks JO., Friedman LF., et al. Long-term effects of mnemonic training on memory performance in 112 community-dwelling older adults. J Gerontol. 2002. In press. [Google Scholar]

240. Israel L., Melac M., Milinkevitch D., Dubos G. Drug therapy and memory training programs: a double-blind randomized trial of general practice patients with age-associated memory impairment. Int Psychogeriatry. 1994;6:155–170. [PubMed] [Google Scholar]

241. Grimby A., Berg S. Stressful life events and cognitive functioning in late life. Aging (Milano). 1995;7:35–39. [PubMed] [Google Scholar]

242. Creasey H., Sulway MR., Dent O., Broe G., Jorm A., Tennant C. Is experience as a prisoner of war a risk factor for accelerated age-related illness and disability? J Am Geriatr Soc. 1999;47:60–64. [PubMed] [Google Scholar]

243. Johnston D. A series of cases of dementia presenting with PTSD symptoms in World War II combat veterans. J Am Geriatr Soc. 2000;48:70–72. [PubMed] [Google Scholar]

244. Bremmer JD., Narayan M. The effects of stress on memory and the hippocampus throughout the life cycle: implications for childhood development and aging. Dev Psychopathol. 1998;10:871–885. [PubMed] [Google Scholar]

245. Lupien SJ., de Leon M., de Santi S., et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998;1:69–73. [PubMed] [Google Scholar]

246. Carlson LE., Sherwin BB., Chertkow HM. Relationships between dehydroepiandrosterone sulfate (DHEAS) and Cortisol (CRT) plasma levels and everyday memory in Alzheimer's disease patients compared to healthy controls. Horm Behav. 1999;35:254–263. [PubMed] [Google Scholar]

247. Seeman TE., McEwen BS., Singer BH., et al. Increase in urinary Cortisol excretion and memory declines: MacArthur studies of successful aging. J Clin Endocrinol Metab. 1997;82:2458–2465. [PubMed] [Google Scholar]

248. Kalmijn S., Launer LJ., Stolk RP., et al. A prospective study on Cortisol, dehydroepiandrosterone sulfate, and cognitive function in the elderly. J Clin Endocrinol Metab. 1998;83:3487–3492. [PubMed] [Google Scholar]

249. Kelly KS., Hayslip BJ. Gains in fluid ability performance and their relationship to Cortisol. Exp Aging Res. 2000;26:153–157. [PubMed] [Google Scholar]

250. Lupien SJ., Gaudreau S., Tchiteya BM., et al. Stress-induced declarative memory impairment in healthy elderly subjects: relationship to Cortisol reactivity. J Clin Endocrinol Metab. 1997;82:2070–2075. [PubMed] [Google Scholar]

251. Lupien SJ., McEwen BS. The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Rev. 1997;24:1–27. [PubMed] [Google Scholar]

252. Berkman LF., Seeman TE., Albert M., et al. High, usual and impaired functioning in community-dwelling older men and women: findings from the MacArthur Foundation Research Network on Successful Aging. J Clin Epidemiol. 1993;46:1129–1140. [PubMed] [Google Scholar]

253. Moffat SD., Zonderman AB., Harman SM., Blackman MR., Kawas C., Resnick SM. The relationship between longitudinal declines in dehydroepiandrosterone sulfate concentrations and cognitive performance in older men. Arch Intern Med. 2000;160:2193–2198. [PubMed] [Google Scholar]

254. Yaffe K., Ettinger B., Pressman A., et al. Neuropsychiatrie function and dehydroepiandrosterone sulfate in elderly women: a prospective study. Biol Psychiatry. 1999;43:694–700. [PubMed] [Google Scholar]

255. Birren JE. Sociopsychologic studies of the aging process. Increments and decrements in the intellectual status of the aged. Psychiatr Res Rep Ami Psychiatr Assoc. 1968;23:207–214. [PubMed] [Google Scholar]

256. Anstey K., Christensen H. Education, activity, health, blood pressure and apolipoprotein E as predictors of cognitive change in old age: a review. Gerontology. 2000;46:163–177. [PubMed] [Google Scholar]

257. Cervilla JA., Prince M., Joels S., Lovestone S., Mann A. Long-term predictors of cognitive outcome in a cohort of older people with hypertension. Br J Psychiatry. 2000;177:66–71. [PubMed] [Google Scholar]

258. Di Carlo A., Baldereschi M., Amaducci L., et al. Cognitive impairment without dementia in older people: prevalence, vascular risk factors, impact on disability. The Italian Longitudinal Study on Aging. J Am Geriatr Soc. 2000;48:775–782. [PubMed] [Google Scholar]

259. Fontbonne A., Berr C., Ducimetiere P., Alperovitch A. Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Diabetes Care. 2001;24:366–370. [PubMed] [Google Scholar]

260. Haan MN., Shemanski L., Jagust WJ., Manolio TA., Kuller L. The role of APOE epsilon4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA. 1999;282:40–46. [PubMed] [Google Scholar]

261. Broe GA., Creasey H., Jorm AF., et al. Health habits and risk of cognitive impairment and dementia in old age: a prospective study on the effects of exercise, smoking and alcohol consumption? Aust N Z J Public Health. 1998;22:621–623. [PubMed] [Google Scholar]

262. Hassmen P., Koivula N. Mood, physical working capacity and cognitive performance in the elderly as related to physical activity. Aging (Milano). 1997;9:136–142. [PubMed] [Google Scholar]

263. Hultsch DF., Hertzog C., Small BJ., Dixon RA. Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging? Psychol Aging. 1999;14:245–263. [PubMed] [Google Scholar]

264. Bassuk SS., Glass TA., Berkman LF. Social disengagement and incident cognitive decline in community-dwelling elderly persons. Ann Intern Med. 1999;131:165–173. [PubMed] [Google Scholar]

265. Drebing C., Van Gorp W., Stuck A., Mitrushina M., Beck J. Early detection of cognitive decline in higher cognitively functioning older adults: sensitivity and specificity of a neuropsychological screening battery. J Neuropsychol. 1994;8:31–37. [Google Scholar]

266. Diehl M., Willis SL., Schaie KW. Practical problem solving in older adults: Observational assessment and cognitive correlates. Psychol Aging. 1995;10:478–491. [PubMed] [Google Scholar]

267. Willis S. Cognitive training and everyday competence. Annu Rev Gerontol Geriatr. 1987;7:159–188. [PubMed] [Google Scholar]

268. Small GW., Mazziotta JC., Collins MT., et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer's disease. JAMA. 1995;273:942–947. [PubMed] [Google Scholar]

269. Reiman EM., Caselli RJ., Yun LS., et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the b4 allele for apolipoprotein E. N Engl J Med. 1996;334:752–758. [PubMed] [Google Scholar]