All earth movements within what period of time are considered a single occurrence of earth movement?

Home Science Earth Science, Geologic Time & Fossils Earth Sciences

German meteorologist Alfred Wegener is often credited as the first to develop a theory of plate tectonics, in the form of continental drift. Bringing together a large mass of geologic and paleontological data, Wegener postulated that throughout most of geologic time there was only one continent, which he called Pangea, and the breakup of this continent heralded Earth’s current continental configuration as the continent-sized parts began to move away from one another. (Scientists discovered later that Pangea fragmented early in the Jurassic Period.) Wegener presented the idea of continental drift and some of the supporting evidence in a lecture in 1912, followed by his major published work, The Origin of Continents and Oceans (1915).

Read more below: Development of tectonic theory

Learn more about Pangea.

Although this has yet to be proven with certainty, most geologists and geophysicists agree that plate movement is caused by the convection (that is, heat transfer resulting from the movement of a heated fluid) of magma in Earth’s interior. The heat source is thought to be the decay of radioactive elements. How this convection propels the plates is poorly understood. Some geologists argue that upwelling magma at spreading centres pushes the plates, whereas others argue that the weight of a portion of a subducting plate (one that is forced beneath another) may pull the rest of the plate along. 

Read more below: Principles of plate tectonics

The Ring of Fire is a long horseshoe-shaped earthquake-prone belt of volcanoes and tectonic plate boundaries that fringes the Pacific Ocean basin. For much of its 40,000-km (24,900-mile) length, the belt follows chains of island arcs such as Tonga and Vanuatu, the Indonesian archipelago, the Philippines, Japan, the Kuril Islands, and the Aleutians, as well as other arc-shaped features, such as the western coast of North America and the Andes Mountains.

Learn more about the Ring of Fire.

plate tectonics, theory dealing with the dynamics of Earth’s outer shell—the lithosphere—that revolutionized Earth sciences by providing a uniform context for understanding mountain-building processes, volcanoes, and earthquakes as well as the evolution of Earth’s surface and reconstructing its past continents and oceans.

The concept of plate tectonics was formulated in the 1960s. According to the theory, Earth has a rigid outer layer, known as the lithosphere, which is typically about 100 km (60 miles) thick and overlies a plastic (moldable, partially molten) layer called the asthenosphere. The lithosphere is broken up into seven very large continental- and ocean-sized plates, six or seven medium-sized regional plates, and several small ones. These plates move relative to each other, typically at rates of 5 to 10 cm (2 to 4 inches) per year, and interact along their boundaries, where they converge, diverge, or slip past one another. Such interactions are thought to be responsible for most of Earth’s seismic and volcanic activity, although earthquakes and volcanoes can occur in plate interiors. Plate motions cause mountains to rise where plates push together, or converge, and continents to fracture and oceans to form where plates pull apart, or diverge. The continents are embedded in the plates and drift passively with them, which over millions of years results in significant changes in Earth’s geography.

The term geology refers, according to Britannica, the fields of study concerned with the solid Earth. How solid is your knowledge of all things geological? Test your knowledge by taking this quiz.

Discover the facts behind the theory of continental drift

Learn more about the theory of continental drift.

Encyclopædia Britannica, Inc.See all videos for this article

The theory of plate tectonics is based on a broad synthesis of geologic and geophysical data. It is now almost universally accepted, and its adoption represents a true scientific revolution, analogous in its consequences to quantum mechanics in physics or the discovery of the genetic code in biology. Incorporating the much older idea of continental drift, as well as the concept of seafloor spreading, the theory of plate tectonics has provided an overarching framework in which to describe the past geography of continents and oceans, the processes controlling creation and destruction of landforms, and the evolution of Earth’s crust, atmosphere, biosphere, hydrosphere, and climates. During the late 20th and early 21st centuries, it became apparent that plate-tectonic processes profoundly influence the composition of Earth’s atmosphere and oceans, serve as a prime cause of long-term climate change, and make significant contributions to the chemical and physical environment in which life evolves.

For details on the specific effects of plate tectonics, see the articles earthquake and volcano. A detailed treatment of the various land and submarine relief features associated with plate motion is provided in the articles tectonic landform and ocean.

In essence, plate-tectonic theory is elegantly simple. Earth’s surface layer, 50 to 100 km (30 to 60 miles) thick, is rigid and is composed of a set of large and small plates. Together, these plates constitute the lithosphere, from the Greek lithos, meaning “rock.” The lithosphere rests on and slides over an underlying partially molten (and thus weaker but generally denser) layer of plastic partially molten rock known as the asthenosphere, from the Greek asthenos, meaning “weak.” Plate movement is possible because the lithosphere-asthenosphere boundary is a zone of detachment. As the lithospheric plates move across Earth’s surface, driven by forces as yet not fully understood, they interact along their boundaries, diverging, converging, or slipping past each other. While the interiors of the plates are presumed to remain essentially undeformed, plate boundaries are the sites of many of the principal processes that shape the terrestrial surface, including earthquakes, volcanism, and orogeny (that is, formation of mountain ranges).

The process of plate tectonics may be driven by convection in Earth’s mantle, the pull of heavy old pieces of crust into the mantle, or some combination of both. For a deeper discussion of plate-driving mechanisms, see Plate-driving mechanisms and the role of the mantle.

Our lives literally revolve around cycles: series of events that are repeated regularly in the same order. There are hundreds of different types of cycles in our world and in the universe. Some are natural, such as the change of the seasons, annual animal migrations or the circadian rhythms that govern our sleep patterns. Others are human-produced, like growing and harvesting crops, musical rhythms or economic cycles.

Cycles also play key roles in Earth’s short-term weather and long-term climate. A century ago, Serbian scientist Milutin Milankovitch hypothesized the long-term, collective effects of changes in Earth’s position relative to the Sun are a strong driver of Earth’s long-term climate, and are responsible for triggering the beginning and end of glaciation periods (Ice Ages).

Specifically, he examined how variations in three types of Earth orbital movements affect how much solar radiation (known as insolation) reaches the top of Earth’s atmosphere as well as where the insolation reaches. These cyclical orbital movements, which became known as the Milankovitch cycles, cause variations of up to 25 percent in the amount of incoming insolation at Earth’s mid-latitudes (the areas of our planet located between about 30 and 60 degrees north and south of the equator).

The Milankovitch cycles include:

  1. The shape of Earth’s orbit, known as eccentricity;
  2. The angle Earth’s axis is tilted with respect to Earth’s orbital plane, known as obliquity; and
  3. The direction Earth’s axis of rotation is pointed, known as precession.

Let’s take a look at each (further reading on why Milankovitch cycles can't explain Earth's current warming here).

Eccentricity – Earth’s annual pilgrimage around the Sun isn’t perfectly circular, but it’s pretty close. Over time, the pull of gravity from our solar system’s two largest gas giant planets, Jupiter and Saturn, causes the shape of Earth’s orbit to vary from nearly circular to slightly elliptical. Eccentricity measures how much the shape of Earth’s orbit departs from a perfect circle. These variations affect the distance between Earth and the Sun.

Eccentricity is the reason why our seasons are slightly different lengths, with summers in the Northern Hemisphere currently about 4.5 days longer than winters, and springs about three days longer than autumns. As eccentricity decreases, the length of our seasons gradually evens out.

The difference in the distance between Earth’s closest approach to the Sun (known as perihelion), which occurs on or about January 3 each year, and its farthest departure from the Sun (known as aphelion) on or about July 4, is currently about 5.1 million kilometers (about 3.2 million miles), a variation of 3.4 percent. That means each January, about 6.8 percent more incoming solar radiation reaches Earth than it does each July.

When Earth’s orbit is at its most elliptic, about 23 percent more incoming solar radiation reaches Earth at our planet’s closest approach to the Sun each year than does at its farthest departure from the Sun. Currently, Earth’s eccentricity is near its least elliptic (most circular) and is very slowly decreasing, in a cycle that spans about 100,000 years.

The total change in global annual insolation due to the eccentricity cycle is very small. Because variations in Earth’s eccentricity are fairly small, they’re a relatively minor factor in annual seasonal climate variations.

Obliquity – The angle Earth’s axis of rotation is tilted as it travels around the Sun is known as obliquity. Obliquity is why Earth has seasons. Over the last million years, it has varied between 22.1 and 24.5 degrees with respect to Earth’s orbital plane. The greater Earth’s axial tilt angle, the more extreme our seasons are, as each hemisphere receives more solar radiation during its summer, when the hemisphere is tilted toward the Sun, and less during winter, when it is tilted away. Larger tilt angles favor periods of deglaciation (the melting and retreat of glaciers and ice sheets). These effects aren’t uniform globally -- higher latitudes receive a larger change in total solar radiation than areas closer to the equator.

Earth’s axis is currently tilted 23.4 degrees, or about half way between its extremes, and this angle is very slowly decreasing in a cycle that spans about 41,000 years. It was last at its maximum tilt about 10,700 years ago and will reach its minimum tilt about 9,800 years from now. As obliquity decreases, it gradually helps make our seasons milder, resulting in increasingly warmer winters, and cooler summers that gradually, over time, allow snow and ice at high latitudes to build up into large ice sheets. As ice cover increases, it reflects more of the Sun’s energy back into space, promoting even further cooling.

Precession – As Earth rotates, it wobbles slightly upon its axis, like a slightly off-center spinning toy top. This wobble is due to tidal forces caused by the gravitational influences of the Sun and Moon that cause Earth to bulge at the equator, affecting its rotation. The trend in the direction of this wobble relative to the fixed positions of stars is known as axial precession. The cycle of axial precession spans about 25,771.5 years.

Axial precession makes seasonal contrasts more extreme in one hemisphere and less extreme in the other. Currently perihelion occurs during winter in the Northern Hemisphere and in summer in the Southern Hemisphere. This makes Southern Hemisphere summers hotter and moderates Northern Hemisphere seasonal variations. But in about 13,000 years, axial precession will cause these conditions to flip, with the Northern Hemisphere seeing more extremes in solar radiation and the Southern Hemisphere experiencing more moderate seasonal variations.

Precession does affect seasonal timing relative to Earth's closest/farthest points around the Sun. However, the modern calendar system ties itself to the seasons, and so, for example, the Northern Hemisphere winter will never occur in July. Today Earth’s North Stars are Polaris and Polaris Australis, but a couple of thousand years ago, they were Kochab and Pherkad.

There’s also apsidal precession. Not only does Earth’s axis wobble, but Earth’s entire orbital ellipse also wobbles irregularly, primarily due to its interactions with Jupiter and Saturn. The cycle of apsidal precession spans about 112,000 years. Apsidal precession changes the orientation of Earth’s orbit relative to the elliptical plane.

The combined effects of axial and apsidal precession result in an overall precession cycle spanning about 23,000 years on average.

A Climate Time Machine

The small changes set in motion by Milankovitch cycles operate separately and together to influence Earth’s climate over very long timespans, leading to larger changes in our climate over tens of thousands to hundreds of thousands of years. Milankovitch combined the cycles to create a comprehensive mathematical model for calculating differences in solar radiation at various Earth latitudes along with corresponding surface temperatures. The model is sort of like a climate time machine: it can be run backward and forward to examine past and future climate conditions.

Milankovitch assumed changes in radiation at some latitudes and in some seasons are more important than others to the growth and retreat of ice sheets. In addition, it was his belief that obliquity was the most important of the three cycles for climate, because it affects the amount of insolation in Earth’s northern high-latitude regions during summer (the relative role of precession versus obliquity is still a matter of scientific study).

He calculated that Ice Ages occur approximately every 41,000 years. Subsequent research confirms that they did occur at 41,000-year intervals between one and three million years ago. But about 800,000 years ago, the cycle of Ice Ages lengthened to 100,000 years, matching Earth’s eccentricity cycle. While various theories have been proposed to explain this transition, scientists do not yet have a clear answer.

Milankovitch’s work was supported by other researchers of his time, and he authored numerous publications on his hypothesis. But it wasn’t until about 10 years after his death in 1958 that the global science community began to take serious notice of his theory. In 1976, a study in the journal Science by Hays et al. using deep-sea sediment cores found that Milankovitch cycles correspond with periods of major climate change over the past 450,000 years, with Ice Ages occurring when Earth was undergoing different stages of orbital variation.

Several other projects and studies have also upheld the validity of Milankovitch’s work, including research using data from ice cores in Greenland and Antarctica that has provided strong evidence of Milankovitch cycles going back many hundreds of thousands of years. In addition, his work has been embraced by the National Research Council of the U.S. National Academy of Sciences.

Scientific research to better understand the mechanisms that cause changes in Earth’s rotation and how specifically Milankovitch cycles combine to affect climate is ongoing. But the theory that they drive the timing of glacial-interglacial cycles is well accepted.